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We study the evolution of the pairing from weak to strong coupling on a honeycomb lattice by quantum
Monte Carlo. We show numerical evidence of the BCS-Bose-Einstein condensation �BEC� crossover as the
coupling strength increases on a honeycomb lattice with small Fermi surface by measuring a wide range of
observables: double occupancy, spin susceptibility, local pair correlation, and kinetic energy. Although at low
energy, the model sustains Dirac fermions, we do not find significant qualitative difference in the BCS-BEC
crossover as compared to those with an extended Fermi surface, except at weak-coupling, BCS regime.
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I. INTRODUCTION

It has long been known that the pairing formed from an
attractive coupling has a smooth crossover between the weak
coupling and the strong coupling.1–3 In the weak-coupling
limit, singlet pairs are formed around the Fermi surface, ac-
cording to the BCS theory. In the strong-coupling limit, local
bound pairs can be formed, and these “preformed pairs” con-
dense as the temperature is further lowered where the Bose-
Einstein condensation �BEC� occurs. The interest on this
crossover has been revitalized4–10 mainly due to the quest of
understanding the pseudogap phase in the high-temperature
superconductors.

Recently, condensed-matter systems sustain on fermions
with linear dispersion, typical examples are honeycomb lat-
tice models and nodal fermions for d-wave superconductors,
have generated huge surge of intensive studies. These models
possess substantial differences from models with extended
Fermi surface such as models on square lattice. In particular,
it has been suggested that the quantum phase transition
�QPT� between the metallic phase and the degenerate charge-
density wave/pairing phase at half filling in the attractive
Hubbard model �AHM� on honeycomb lattice is related to its
BCS-BEC crossover away from half filling.11 This certainly
does not happen on the square lattice, in which the flat Fermi
surface at half-filling renders the Umklapp scattering becom-
ing the dominant channel, its BCS-BEC crossover is not re-
lated to any QPT through tuning the attractive coupling.12 In
the honeycomb lattice, the density of state is zero at half
filling, therefore any instability from the band structure is
weakened and strong coupling is needed to induce ordering.
It can be shown that all the short-range interactions are irrel-
evant. In order to tackle the strong-coupling problem, be-
sides breaking the symmetry by mean-field ansatz, we
choose quantum Monte Carlo �QMC� method in this work to
study the BCS-BEC crossover in the honeycomb lattice.

Various studies6,13–15 have been devoted to the BCS-BEC
crossover of the AHM on a square lattice. The objective of
this work is to study how do the linear dispersion and the
aforementioned QPT at half filling affect the BCS-BEC
crossover of the slightly doped system.

Our main finding can be summarized as follow. At the
weak-coupling, BCS-like regime, pseudogap phenomena are
observed, however we expect that it is mainly due to the
band structure of honeycomb lattice, rather than the bound
pair formation. At the intermediate coupling, crossover re-
gime, we can identify two temperature scales, the high tem-
perature one where the performed pair formed with associ-
ated pseudogap phenomena; and the low temperature one
where the system enters the pairing phase. At strong-
coupling, BEC-like regime, the electrons form pairs at high
temperature and condense as hardcore bosons at low tem-
perature. However, we do not find distinctive feature com-
pares to the square lattice, except at the weak-coupling re-
gime where the band structure dominates the quasiparticle
dispersion.

II. MODEL AND METHOD

The AHM in honeycomb lattice reads

H = − t �
�i,j�,�

ci�
+ cj� − U�

i

ni↑ni↓ − ��
i�

ni�, �1�

where ci��ci�
+ � annihilates �creates� a particle with spin �

at site i, �i , j� denotes the nearest-neighbor lattice sites i
and j, t is the hopping matrix element, U is the on-site
attractive interaction, and � is the chemical potential. In
the following we set t=1 as the energy scale of the
system. The bare electronic �U=0 limit� dispersion is given
by �k= ��3+2 cos��3ky�+4 cos��3ky /2�cos�3kx /2� and the
band width W is 6. At half filling this is linear around the
Fermi points. Keeping only the low energy excitations, in the
first quantized form the wave function follows the two-
dimensional Weyl equation for massless chiral Dirac fermi-
ons, vF�̂ ·���r�=E��r�, where �̂= ��x ,�y� are the Pauli
matrices and vF=3 /2 is the Fermi velocity. This description
in term of Dirac fermions is not exact away from half filling.
Nevertheless, the linear dispersion can be a good approxima-
tion below the van Hove singularities at filling n=1�1 /4.
For this reason, we choose n=0.88 for our calculations using
determinant quantum Monte Carlo �DQMC�.16
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The DQMC �Refs. 16 and 17� is a Hamiltonian based
approach. The Hamiltonian H in the partition function Z
=Tr exp�−�H� is expressed in the real space via the Trotter
decomposition and Hubbard-Stratonovich �HS� transforma-
tion. The only systematic error is from discretizing the
imaginary time � into M slices of �	=� /M in the Trotter
decomposition. The HS transformation replaces the on-site
interactions in the attractive Hubbard model by HS fields
coupled to the charge. The summation over the HS fields is
treated by Monte Carlo procedure. The calculations are pro-
ceeded on a N=72 sites honeycomb lattice, the actual lattice
for the simulation is shown in the Fig. 1. Since the attractive
Hubbard coupling does not have minus-sign problem, a wide
range of temperatures and couplings can be studied.

III. QMC RESULTS

One of the clear signals indicating the formation of bound
pairs at strong coupling is the formation of spin gap. At weak
coupling, we expect fermion quasiparticle character to re-
main at high temperature, for which the spin susceptibility
increases as the temperature is lowered. On the other hand,
the strong-coupling limit is manifested by the decrease in the
spin susceptibility as the temperature is lowered, due to the
formation of the gap which leads to the reduction in the
spectral function at low frequency.

We first show the spin susceptibility 
�q ,�� at frequency
�=0 and momentum q= �0,0� in Fig. 2, where we also show
the spin susceptibility from random-phase approximation
�RPA� calculation for comparison. 
�0,0� is suppressed for
all couplings, as can be inferred simply from the RPA for-
mulation, where 
RPA�0,0�=
0�0,0� / �1+U
0�0,0��. At
weak coupling 
�0,0� increases as the temperature is low-
ered as expected for a fermion quasiparticle description,
however it bends downward before it goes upward again as
the temperature is lowered further. This two peak structure of

�0,0� associated with the formation of the pseudogap has
been found in the dynamical mean-field-theory study.6 How-
ever, in the honeycomb lattice, the apparent pseudogap phe-
nomena indicated by this structure of 
�0,0� already exist in
the weak-coupling regime, below the strong-coupling regime
where the “preformed pair” phenomena occur. Therefore, we
believe that it is derived from the particular dispersion rela-

tion of honeycomb lattice, where the density of state is small
around the doped Fermi surface.

On the other hand, in the strong-coupling regime, 
�0,0�
vanishes quickly as the bound pairs are formed and spin gap
equals the binding energy needed to break the pair. In the
weak-coupling regime, the QMC results behave similarly as
compared to the RPA results. When the interaction is in-
creased to around W /2, the QMC results evolve in the oppo-
site direction as compared to the RPA results and drop
sharply at low temperature, whereas the RPA results at low-
temperature limit do not change qualitatively when U in-
creases. This signals that the system enters the phase in
which electrons form bound pairs and the spin excitations
start to be gapped.13 The pairing phase cannot be reached by
summing the ladder diagrams within the RPA. For strong
coupling �U	W�, the suppression of 
�0,0� becomes
smooth and appears at high temperature. This effect reflects
the fact that the bound pairs are already formed at high
temperature.14 The temperature where deviations appear be-
tween the QMC results and the RPA results is an indication
of the formation of local singlet pair, which can be inter-
preted as the energy scale where the fermion quasiparticle
description is not valid for any lower temperature.

We then probe the pairing directly by considering the
pairing correlation function for local pairing, P0

= 1
N2 �l,i�ci+l,↑

† ci+l,↓
† ci,↓ci,↑+H.c.�. The only instability is pair-

ing, in this incommensurate doped case �rules out charge-
density wave order�. We expect P0 to increase as temperature
is lowered for all coupling strengths. One of the most repre-
sentative characteristics of local pairs is that they are distrib-
uted uniformly in space and condense around zero momen-
tum as bosons when temperature is lowered. This is
manifested by the rapid increase in local pair correlation as

shown in Fig. 2, note that the single-particle contribution P̄0
has been subtracted from P0 to emphasize the vertex contri-
bution of pairing.18 The condensation of the bosonic local
pairs for the strong-coupling case �U=5,6� can be observed

from the rapid increase in P0− P̄0 with the decrease in tem-
perature. In contrast, the pairs formed around the quasiparti-

FIG. 1. �Color online� Sketch of a 72 sites honeycomb lattice.
The solid circles are the lattice points in the honeycomb lattice. The
two triangular sublattices are labeled by different colors. T�1 and T�2

are the real-space translational vectors.
0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.1

0.2

0.3

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

χ(
0,

0)

T

QMC
|U|=

1
2
3
4
5
6

RPA
|U|=

0
1
2
3
4

P
0-

P
0

T

QMC
|U|=

1
2
3
4
5
6

FIG. 2. �Color online� Uniform spin susceptibility 
�0,0� �left�
and pairing correlation function P0− P̄0 �right� as a function of tem-
perature for a range of interaction strength at n=0.88.
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cle Fermi surface in the weak-coupling regime only bring a

slight increase in P0− P̄0.
We show the kinetic energy, Ek= �−t /N���i,j�,��ci,�

+ cj,�� in
Fig. 3. In the weak-coupling regime, its temperature depen-
dence is similar to the free fermion case. When we increase
the interaction to the crossover regime �U	3–4�, qualitative
change already happened in the high temperature, where the
gain in the kinetic energy is much slower than the free fer-
mion case. Moving into the strong-coupling regime, fermi-
ons begin to form bound pairs at high temperature and only
lose little kinetic energy. When temperature further de-
creases, the local pairs in the system condense and hence Ek
drops sharply.14

A good indicator to measure the local pair formation in
the BEC state is the double occupancy �n↑n↓�

�1 /N��i�ni,↑ni,↓�, see Fig. 3. We find that �n↑n↓� increases
as the temperatures decrease. However, it reaches a local
maximum at certain temperature. This can be understood as
the change in the kinetic energy which destabilizes the
double occupancy. This behavior of �n↑n↓� are in accord with
the fact that the local maximum coincides with the tempera-
ture where the kinetic energy drops most sharply. At very
low temperature, the bosonic on-site pairs begin to dominate,
�n↑n↓� increases again and should saturate at n /2 for strong
couplings.

After elaborating the evidence of BCS-BEC crossover, we
put those observables from DQMC together and identify the
temperature scales for different U. In Fig. 4, we show the
results represented for weak �U=1�, intermediate �U=3,4�,
and strong �U=6� couplings.

At U=1, 
�0,0� QMC result does not deviate from the
RPA result. The local pair correlation does not develop, and
�n↑n↓� is small even at low temperature, which shows that
the pairing correlation is weak. The critical temperature, Tc,
for the Kosterlitz-Thouless transition into the pairing phase
is below the lowest temperatures we studied.

At U=3, 
�0,0� local pair correlations begin to increase
at Tc	0.2. At almost the same temperature the QMC result
begins to deviate from the RPA result. These imply the de-

velopments in both spin and pairing correlations. The system
shows BCS-like pairing effect from the instability of the
Fermi surface. However, there is no true phase coherence at
any finite temperature. Nevertheless, at this coupling
strength, the pairing is still rather weak, due to the small
density of state around the Fermi energy.

At U=4 the system displays two temperature scales. The
first one is T� at high temperature around T	0.8, this could
be associated with the pseudogap phase. At this temperature,

�0,0� from QMC result reaches its maximum and begins to
deviate from the RPA result. In addition �n↑n↓� also reaches
the first plateau at high temperature. These signal that elec-
trons bound pairs start to develop, spin gap is formed and the
quasiparticle description is broken below this temperature.
We estimate the critical temperature for the condensation of
bound pairs, Tc	0.3. Below this temperature, the local pair

correlation P0− P̄0 grows quickly and 
�0,0� drops sharply;
�n↑n↓� reaches its low-temperature maximum and saturates.

At U=6, the system is at the strong-coupling limit, where
U reaches the band width W, there is only one temperature
scale in the system, Tc	0.5, within the temperature range
we studied. 
�0,0� reaches its maximum at very high tem-
perature and decreases smoothly, which suggests that pair
formation begins at a very high temperature, above the tem-

perature range we studied. Below Tc, P0− P̄0 increase
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FIG. 3. �Color online� The kinetic energy Ek �left� and double
occupancy �n↑n↓� �right� as a function of temperature for a range of
interaction strength at n=0.88.

FIG. 4. �Color online� Double occupancy �n↑n↓�, uniform spin
susceptibility 
�0,0� and pairing correlation P0− P0 as a function of
temperature for different coupling strength at �n�=0.88 filling.
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quickly, and �n↑n↓� tends to n /2 at zero temperature. These
suggest that the bound pairs undergo a Kosterlitz-Thouless
transition, which manifests a BEC-like scenario.

From the above numerically exact DQMC data, we show
clearly that there is a qualitative change from weak to strong
coupling at finite temperature. This should correspond to the
true BCS-BEC crossover at zero temperature. However, we
find that the results for the honeycomb lattice have no drastic
qualitative difference as compared to that of the square
lattice.14 Certainly, the band structure alters the quantitative
values of the coupling for the crossover. However, the BCS-
BEC crossover on a doped honeycomb lattice models exists
at U	3–4 where the linear dispersion approximation for the
free fermions is not valid.

IV. DISCUSSIONS AND CONCLUSIONS

With the progress of the techniques of optical lattices and
the fabrication of single-layer graphene, the BCS-BEC cross-
over on a honeycomb lattice and Dirac fermions is not only
an important problem itself but also has broad experimental
and theoretical interests with other topics under intensive
studies.

The atom-atom interaction in ultracold fermionic atoms in
an optical trap can be tuned by magnetic field Feshbach reso-
nance. The honeycomb lattice can possibly be realized by
optical trap.19 This may provide a direct way to study experi-
mentally the BCS-BEC crossover problem with linear

dispersion.19 In addition, the superconducting phase of
graphene via the attraction from phonons and plasmons has
been discussed recently.20–24 Although it is unlikely to gen-
erate strong attraction from phonon coupling in graphene,
our results suggest that even at weak-coupling regime, non-
trivial temperature dependence of spin susceptibility may oc-
cur in the superconducting phase from local Holstein phonon
coupling.

In conclusion, we have presented extensive results from
DQMC which confirm the BCS-BEC crossover for the
doped �n=0.88� AHM on a honeycomb lattice. In contrast to
the systems with extended Fermi surface, there is an en-
hancement in pseudogap property revealed from the double-
peak structure in the spin susceptibility at weak coupling due
to the peculiar density of state of honeycomb lattice. Apart
from this, the BCS-BEC crossover does not show prominent
difference between square lattice and honeycomb lattice for
the parameters and system size we study.
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